Telegram Group & Telegram Channel
Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/986
Create:
Last Update:

Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/986

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Библиотека собеса по Data Science | вопросы с собеседований from pl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA